# The Rules for Profitably Using Margin 

By Jim Otar, CMT, CFP
Nov. 17, 2008

Borrowing to invest can be tempting when you want to make up for losses or capitalize on market opportunities. Here's an analysis of the factors affecting margin investing-interest rates, alpha, asset allocation, stops, loan terms, and more-and how they impact returns in different market environments.

When using margin, investors generally expect a minimum profit of $\$ 3$ for each dollar at risk. Realizing a gain and avoiding losses depends on the interplay of a number of factors, some of which you can influence and some of which you can't.

In the article "The Pitfalls of Margin," I described the terms associated with leveraging and gave two examples using actual market history starting in the years 1990 and 1973. Of course, picking two years from the history does not reveal the entire picture. In this article I will demonstrate the pitfalls of leveraging for the investor using the entire market history since 1900.

Here is our example: Bob is 30 years old. He has $\$ 100,000$ in his portfolio. His portfolio is aggressive-100\% S\&P 500. For his portfolio growth, I used the historical index return plus dividends, less his portfolio costs of $0.5 \%$.

Bob decides to borrow \$100,000 to enhance the return of his investments. He pays only the interest, which is paid out of his portfolio. The interest rate is equal to six-month short-term deposit interest rate plus $3 \%$. At the end of 10 years, Bob is planning to pay back the loan principal from the portfolio.

I calculated the profit or loss as a result of leveraging for each starting year since 1900. I used my leveraging calculator, which is based on actual market history. Table 1 depicts the outcome. Figure 1 shows the same in graphical format.

Table 1: Pretax Cost/Benefit Analysis of Leveraging

| Year | Profit/loss | Year | Profit/loss | Year | Profit/loss | Year | Profit/loss |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1900 | $\$ 27,250$ | 1925 | $-\$ 16,300$ | 1950 | $\$ 288,084$ | 1975 | $\$ 44,317$ |
| 1901 | $-\$ 10,295$ | 1926 | $-\$ 6,546$ | 1951 | $\$ 185,496$ | 1976 | $-\$ 10,886$ |
| 1902 | $-\$ 33,475$ | 1927 | $\$ 11,342$ | 1952 | $\$ 193,895$ | 1977 | $-\$ 51,850$ |
| 1903 | $-\$ 36,593$ | 1928 | $-\$ 57,342$ | 1953 | $\$ 135,363$ | 1978 | $-\$ 1,732$ |
| 1904 | $\$ 132$ | 1929 | $-\$ 90,174$ | 1954 | $\$ 190,345$ | 1979 | $\$ 22,507$ |
| 1905 | $-\$ 44,162$ | 1930 | $-\$ 72,652$ | 1955 | $\$ 105,959$ | 1980 | $\$ 31,511$ |
| 1906 | $-\$ 54,335$ | 1931 | $-\$ 46,184$ | 1956 | $\$ 60,429$ | 1981 | $-\$ 37,009$ |


| 1907 | $-\$ 44,413$ | 1932 | $\$ 29,729$ | 1957 | $\$ 35,645$ | 1982 | $\$ 88,122$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1908 | $-\$ 4,407$ | 1933 | $\$ 85,010$ | 1958 | $\$ 95,820$ | 1983 | $\$ 87,741$ |
| 1909 | $-\$ 40,982$ | 1934 | $\$ 34,523$ | 1959 | $\$ 28,224$ | 1984 | $\$ 66,574$ |
| 1910 | $-\$ 52,151$ | 1935 | $\$ 82,524$ | 1960 | $\$ 5,547$ | 1985 | $\$ 90,263$ |
| 1911 | $-\$ 52,987$ | 1936 | $\$ 42,234$ | 1961 | $\$ 5,367$ | 1986 | $\$ 81,486$ |
| 1912 | $-\$ 53,573$ | 1937 | $-\$ 16,627$ | 1962 | $-\$ 25,551$ | 1987 | $\$ 84,888$ |
| 1913 | $-\$ 47,212$ | 1938 | $\$ 58,671$ | 1963 | $\$ 16,884$ | 1988 | $\$ 156,335$ |
| 1914 | $-\$ 25,621$ | 1939 | $\$ 48,004$ | 1964 | $-\$ 36,107$ | 1989 | $\$ 193,493$ |
| 1915 | $\$ 18,428$ | 1940 | $\$ 70,718$ | 1965 | $-\$ 75,294$ | 1990 | $\$ 155,739$ |
| 1916 | $-\$ 16,201$ | 1941 | $\$ 159,834$ | 1966 | $-\$ 82,413$ | 1991 | $\$ 189,247$ |
| 1917 | $-\$ 20,587$ | 1942 | $\$ 261,986$ | 1967 | $-\$ 53,514$ | 1992 | $\$ 84,726$ |
| 1918 | $\$ 98,135$ | 1943 | $\$ 241,148$ | 1968 | $-\$ 84,556$ | 1993 | $\$ 38,981$ |
| 1919 | $\$ 149,052$ | 1944 | $\$ 178,399$ | 1969 | $-\$ 95,642$ | 1994 | $\$ 64,988$ |
| 1920 | $\$ 81,653$ | 1945 | $\$ 232,734$ | 1970 | $-\$ 75,702$ | 1995 | $\$ 97,366$ |
| 1921 | $\$ 119,291$ | 1946 | $\$ 184,511$ | 1971 | $-\$ 63,307$ | 1996 | $\$ 38,838$ |
| 1922 | $\$ 22,956$ | 1947 | $\$ 265,381$ | 1972 | $-\$ 94,197$ | 1997 | $\$ 23,385$ |
| 1923 | $-\$ 20,713$ | 1948 | $\$ 240,842$ | 1973 | $-\$ 129,369$ |  |  |
| 1924 | $\$ 22,241$ | 1949 | $\$ 331,248$ | 1974 | $-\$ 83,160$ |  |  |

Source: Jim Otar
If you observe the figures in Table 1 closely, starting in 1900, the cumulative profit/loss picture did not turn positive until 1938. In my circle of friends, I don't know of anyone who is rich enough-or dumb enough-to keep borrowing for 37 years, paying all that interest, only to break even at the end (or worse).

Figure 1: Cost/Benefit of Leveraging


Wearing a Gaussian hat for a moment, here are some statistics:

- Number of winning years: 59
- Number of losing years: 39
- Average win amount: $\$ 103,145$
- Average loss amount: $\$ 47,790$
- Median profit due to the leveraging: $\$ 25,318$
- Lucky (top 10\%) profit: \$189,572
- Median profit: \$25,318
- Unlucky (bottom 10\%) loss: \$66,111
- Worst-case loss: \$129,369

Just because the median profit was a positive number over this time period, don't jump to the conclusion that all is well. We have to go beyond the median.

## Calculating the profit factor

Traders use a concept called the profit factor. The profit factor measures the ratio of total dollars won to total dollars lost over the entire time period. It is calculated as:

Profit Factor $=P F=\frac{W Y \times W A}{L Y \times L A}$
where:

WY is the number of winning years
WA is the average win amount
LY is the number of losing years
LA is the average loss amount

In this case, the profit factor is:

$$
\text { Profit Factor }=P F=\frac{59 \times \$ 103,145}{39 \times \$ 47,790}=3.27
$$

Generally in the trading world, if you are risking money, you want a profit factor larger than 3; i.e., each dollar of potential loss must come with a $\$ 3$ potential gain. Here is the catch: We are talking about a hundred-year time span. Considering that the average investing time horizon is between 20 and 30 years for an individual, this high profit factor that is based on

100 years does not necessarily mean that an individual with a limited time horizon will see any of this high-profit factor.

Let's look at various factors to see what works and what doesn't when it comes to leveraging for individuals.

## Own/loan ratio

If your entire investment portfolio consists of borrowed money, the own/loan ratio is 0 .
If you have $\$ 100,000$ in your portfolio and you borrow $\$ 100,000$ to invest, your own/loan ratio is 1 .

I recalculated the profit/loss table (Table 1) for various own/loan ratios and for various loan repayment methods for all years since 1900. Then I calculated the profit factor for each, as indicated in Table 2.

Table 2: Profit Factor for Various Own/Loan Ratio and Repayment Methods

|  | Loan repayment method |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Own/ <br> loan <br> ratio | Paying <br> interest <br> only | Paying annually <br> 10\% of the initial <br> loan amount | Paying annually <br> 15\% of the initial <br> loan amount | Paying annually <br> 20\% of the initial <br> loan amount |  |
|  | Profit factor |  |  |  |  |
| 0 | 2.85 | 2.53 | 3.04 | 3.28 |  |
| 1 | 3.27 | 2.97 | 2.57 | 2.34 |  |
| 3 | 2.68 | 2.56 | 2.48 | 2.32 |  |

Source: Jim Otar
Table 2 indicates that:

- If your own/loan ratio is 1 or more, you are better off paying interest only over the term of the loan and repaying the loan principal at the end of the term.
- If the own/loan ratio is 0-i.e., the entire investment portfolio is other people's money-you are better off paying down at least $15 \%$ of the original loan amount each year until the end of the loan term, until the loan is paid off, or until the portfolio depletes, whichever comes first.


## Depletion stop

The portfolio is considered to be depleted when its value becomes less than one year's loan repayment amount. If the portfolio depletes, you can continue paying your loan repayments as if nothing had happened. Your other option is to liquidate the portfolio and pay off the loan.

If you continue paying interest after depletion, worst-case losses will be higher, especially if your loan payments include principal and interest. For the remainder of this article, the
entire loan is repaid immediately when the portfolio is depleted.

## Asset allocation

You may feel more comfortable holding some fixed income or buying balanced funds in your leveraged portfolio. After all, we have been indoctrinated to invest within our risk tolerance.

Here is the catch: For an individual investor, because the cost of borrowing is usually higher than the yield of a fixed-income portfolio, it does not pay to borrow at a higher interest rate and then invest even some of that money in fixed income. If you are already taking a higher risk by borrowing money to invest, you might as well be prepared to invest $100 \%$ in equities.

Otherwise, don't borrow.
I calculated the profit factor for various asset mixes for all years since 1900, as indicated in Table 3 (own/loan ratio is 0 ) and Table 4 (own/loan ratio is 1 ).

| Asset mix | Loan repayment method |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Paying interest only | Paying annually $10 \%$ of the initia Ioan amount | Paying annually $15 \%$ of the initial loan amount | Paying annually $20 \%$ of the initial Ioan amount |
|  |  |  | rofit factor |  |
| 100\% S\&P 500 | 2.85 | 2.53 | 3.04 | 3.28 |
| 80\% S\&P 500, 20\% fixed income | 2.24 | 1.97 | 2.39 | 2.58 |
| 60\% S\&P 500 40\% fixed income | 1.50 | nm | 1.53 | 1.78 |

Source: Jim Otar

|  | Loan repayment method |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Asset mix | Paying interest only | Paying annually $10 \%$ of the initial loan amount | Paying annually $15 \%$ of the initial loan amount | Paying annually $20 \%$ of the initial loan amount |
|  | Profit factor |  |  |  |
| 100\% S\&P 500 | 3.27 | 2.97 | 2.57 | 2.34 |
| 80\% S\&P 500, 20\% fixed income | 2.81 | 2.59 | 2.24 | 2.00 |
| 60\% S\&P 500, 40\% fixed income | 1.96 | 1.89 | 1.72 | 1.52 |

Source: Jim Otar
This table tells us the highest profit factor occurs when a portfolio is most aggressive. For the remainder of this article, the borrowed money is invested $100 \%$ in S\&P 500 and nothing is invested in fixed income.

## Margin stop

When the portfolio value goes below a certain percentage of the loan balance, you may get a margin call. When that happens, you need to either add cash to your account to improve the margin ratio, or liquidate some or all of your investments reducing or eliminating your loan amount. I calculated the profit factor for various margin stop levels for all years since 1900 in Table 5:

Table 5: The Profit Factor for Various Margin-Stop Levels

|  | Loan repayment method |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Margin stop level | Paying <br> interest <br> only | Paying annually <br> 10\% of the initial <br> loan amount | Paying annually <br> 15\% of the initial <br> loan amount |
|  | Profit factor |  |  |
| No stop | 2.85 | 2.53 | 3.04 |
| $60 \%$ | 3.08 | 2.94 | 3.17 |
| $70 \%$ | 3.23 | 3.13 | 3.20 |
| $80 \%$ | 3.51 | 3.42 | 3.26 |
| $90 \%$ | 2.93 | 2.89 | 2.89 |
| $100 \%$ | 2.44 | 2.26 | 2.27 |

Source: Jim Otar
This table tells us at least two things:

- Never meet a margin call, never add money. Liquidate and pay off the loan.
- The optimum stop is at around $80 \%$. Once the portfolio value is below $80 \%$ of the remaining loan balance, liquidate and pay off the loan. Don't wait in despair hoping that the markets will turn around and wipe out your losses. The markets may turn around, but that won't likely wipe out your losses.

A margin stop of $80 \%$ is used in all of the remaining tables in this article.

## Trailing stop

The trailing stop enables you to pay off the loan on a high note if you are in a profitable position. It is triggered when the portfolio value drops to below a predetermined percentage of its peak value. The profit factors for various levels of trailing stop are indicated in Table 6.

| Table 6: The Profit Factor for Various Trailing Stop Levels |  |  |
| :--- | :--- | :---: |
|  | Loan repayment method |  | \left\lvert\, \(\left.\begin{array}{|l|l|}\hline Trailing stop level \& \begin{array}{c}Paying interest only, <br>

own/loan ratio=1\end{array} <br>
\hline Proying annually 15\% <br>
of initial loan amount, <br>
own/loan ratio=0\end{array}\right.\right\}\)

| $5 \%$ from the peak value | Nm Nm | Nm |
| :--- | ---: | ---: |
| $10 \%$ from the peak value | Nm | Nm |
| $15 \%$ from the peak value | 3.42 | Nm |
| $20 \%$ from the peak value | 3.06 | Nm |

Source: Jim Otar
Observing this table, we come to two conclusions:

- If the own/loan ratio is 0 and you are paying down $15 \%$ of the initial loan amount each year-the optimum-you are better off not implementing any trailing stops.
- If the own/loan ratio is 1 or larger and you are paying the loan interest only, the optimum trailing stop is when the portfolio value goes below $15 \%$ of its peak level.

During the year, the portfolio will fluctuate, but this trailing stop decision is made only once a year at the end of the calendar year.

You might ask, "Should I implement the trailing stop immediately, starting with the first year or after a few years of investing?" I analyzed the effects of starting the trailing stop after two, four, and six years. In all cases, implementing the trailing stop at the beginning was better.

A trailing stop of $15 \%$ is used in all of the remaining tables for own/loan ratio of 1 .

## Alpha

Alpha is the excess return over and above the benchmark, and it has a great influence on the profitability factor. It is one of the most important factors in the profit/loss picture of leveraging. I calculated the profit factor for various levels of alpha for all years since 1900. They are indicated in Table 7.

| Alpha | Loan repayment method |  |
| :---: | :---: | :---: |
|  | Paying interest only, own/loan ratio=1 | Paying annually $15 \%$ of initial loan amount, own/loan ratio=0 |
|  | Profit factor |  |
| -4\% | Nm | Nm |
| -2\% | Nm | Nm |
| 0\% | Nm | Nm |
| 2\% | Nm | Nm |
| 4\% | 3.93 | 3.07 |
| 6\% | 5.16 | 5.99 |
| Historic total return of S\&P 500 less $0.5 \%$ portfolio costs | 3.42 | 3.26 |

Source: Jim Otar

Observing this table, we come to two conclusions:

- Do not leverage unless your portfolio consistently outperforms the index by $4 \%$ or better.
- Going forward, based on current dividend yields, avoid leveraging using market index funds, because they do not provide sufficient alpha even when dividends are included.


## Interest rate

The interest rate has a great influence on the outcome. In Figure 2, I added the historic interest rate to the historical profit/loss chart that was depicted in Figure 1. The vertical scale on the left of the chart indicates the profit/loss as a result of leveraging. The vertical scale on the right-hand side of the graph indicates the interest rate.

We observe that there are two relatively long-term waves of profitable leveraging. The first one started after 1932. The second one started 49 years later, after 1981. There is a common thread between these two waves: they both occurred immediately after sharp drops in the interest rates. These are indicated with arrows on the chart.

If you are lucky, you may be able to catch a similar wave once in your lifetime. That is, if you notice it in a timely fashion. But I think such an opportunity is now well behind us baby boomers. The next such opportunity may not come until 2030, according to the 54 -year Kondratieff cycle.

Figure 2: Correlation Between the Prevailing Interest Rate and Profit/Loss of Leveraging


Year

Table 8 indicates the profit factor for various interest rates:
Table 8: The Profit Factor for Various Net Interest Rate Levels

|  | Loan repayment method |  |
| :--- | ---: | ---: |
| Net interest rate | Paying interest only, <br> own/loan ratio=1 | Paying annually 15\% <br> of initial loan amount, <br> own/loan ratio=0 |
|  | Profit factor |  |
| Six-month CD yield minus 1\% | 10.17 | 9.27 |
| Six-month CD yield plus 0\% | 7.70 | 7.18 |
| Six-month CD yield plus 1\% | 6.03 | 5.45 |
| Six-month CD yield plus 2\% | 4.39 | 4.29 |
| Six-month CD yield plus 3\% | 3.42 | 3.26 |
| Six-month CD yield plus 4\% | 2.57 | Nm |

Source: Jim Otar
If you are paying an interest rate that is $3 \%$ higher than a six-month CD, leveraging is unlikely to work for you profitably over the long term.

## Term of the loan

Time heals most wounds. This is also true for leveraged investments. A longer loan term can create a higher profit factor, provided you don't get stopped out. I calculated the profit factor for various loan terms, as indicated in Table 9.

| Table 9: The Profit Factor for Various Loan Terms; Own/Loan Ratio=0 |  |  |  |
| :--- | :--- | :--- | :--- |
|  | Loan repayment method |  |  |$|$

Source: Jim Otar
If your loan term is less than 10 years, leveraging is unlikely to work for you profitably.

## Final thoughts on leveraging

Three of the most important factors that determine the success of a leverage strategy are luck, interest rate, and alpha. You have no control over luck and the interest rate. As for alpha, most of us have insignificant control over it unless we follow a disciplined asset selection and monitoring strategy.

After all this discouragement, if you still want to advise your clients to borrow money to invest, here are some guidelines:

- Don't borrow an amount that is more than what the client already owns.
- Don't leverage if your client is within 10 years of retirement or already retired. The loan term must be 10 years or longer without any withdrawals.
- Pay abundant attention to asset selection; you'll need to outperform the index by $4 \%$ or better.
- Make sure client's net (after-tax) interest cost is at a minimum; it should not exceed the six-month CD plus 3\%.

Never meet a margin call. Liquidate assets and pay off the loan if asset value is below $80 \%$ of the loan balance.

- Use a $15 \%$ trailing stop. Liquidate sufficient assets to pay off the loan if portfolio value goes below $85 \%$ of its peak value at the end of the year.

If your client meets all these points, good luck-you will need it.

Jim Otar is a financial planner, a professional engineer, a market technician, a financial writer, and the founder of retirementoptimizer.com. His past articles on retirement planning won the CFP Board Article Awards in 2001 and 2002. He lives and works in Thornhill, Canada, and can be reached at (905) 889-7170, or by e-mail at iimotar@rogers.com.

## IMPORTANT NOTICE

This material is provided exclusively for use by Horsesmouth members and is subject to Horsesmouth Terms \& Conditions and applicable copyright laws. Unauthorized use, reproduction or distribution of this material is a violation of federal law and punishable by civil and criminal penalty. This material is furnished "as is" without warranty of any kind. Its accuracy and completeness is not guaranteed and all warranties express or implied are hereby excluded.

